3.122 \(\int \frac {\sin ^n(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx\)

Optimal. Leaf size=60 \[ -\frac {\cos (e+f x) F_1\left (\frac {1}{2};-n,1;\frac {3}{2};1-\sin (e+f x),\frac {1}{2} (1-\sin (e+f x))\right )}{f \sqrt {a \sin (e+f x)+a}} \]

[Out]

-AppellF1(1/2,-n,1,3/2,1-sin(f*x+e),1/2-1/2*sin(f*x+e))*cos(f*x+e)/f/(a+a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 60, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2787, 2785, 130, 429} \[ -\frac {\cos (e+f x) F_1\left (\frac {1}{2};-n,1;\frac {3}{2};1-\sin (e+f x),\frac {1}{2} (1-\sin (e+f x))\right )}{f \sqrt {a \sin (e+f x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^n/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

-((AppellF1[1/2, -n, 1, 3/2, 1 - Sin[e + f*x], (1 - Sin[e + f*x])/2]*Cos[e + f*x])/(f*Sqrt[a + a*Sin[e + f*x]]
))

Rule 130

Int[((e_.)*(x_))^(p_)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> With[{k = Denominator[p]
}, Dist[k/e, Subst[Int[x^(k*(p + 1) - 1)*(a + (b*x^k)/e)^m*(c + (d*x^k)/e)^n, x], x, (e*x)^(1/k)], x]] /; Free
Q[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && FractionQ[p] && IntegerQ[m]

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 2785

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Dist[(b*(d
/b)^n*Cos[e + f*x])/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]]), Subst[Int[((a - x)^n*(2*a - x)^(m -
 1/2))/Sqrt[x], x], x, a - b*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0] && GtQ[d/b, 0]

Rule 2787

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(a^In
tPart[m]*(a + b*Sin[e + f*x])^FracPart[m])/(1 + (b*Sin[e + f*x])/a)^FracPart[m], Int[(1 + (b*Sin[e + f*x])/a)^
m*(d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rubi steps

\begin {align*} \int \frac {\sin ^n(e+f x)}{\sqrt {a+a \sin (e+f x)}} \, dx &=\frac {\sqrt {1+\sin (e+f x)} \int \frac {\sin ^n(e+f x)}{\sqrt {1+\sin (e+f x)}} \, dx}{\sqrt {a+a \sin (e+f x)}}\\ &=-\frac {\cos (e+f x) \operatorname {Subst}\left (\int \frac {(1-x)^n}{(2-x) \sqrt {x}} \, dx,x,1-\sin (e+f x)\right )}{f \sqrt {1-\sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\\ &=-\frac {(2 \cos (e+f x)) \operatorname {Subst}\left (\int \frac {\left (1-x^2\right )^n}{2-x^2} \, dx,x,\sqrt {1-\sin (e+f x)}\right )}{f \sqrt {1-\sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\\ &=-\frac {F_1\left (\frac {1}{2};-n,1;\frac {3}{2};1-\sin (e+f x),\frac {1}{2} (1-\sin (e+f x))\right ) \cos (e+f x)}{f \sqrt {a+a \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 1.34, size = 234, normalized size = 3.90 \[ \frac {\cos (e+f x) \sqrt {a (\sin (e+f x)+1)} \sin ^{2 n}(e+f x) \left (-\sin ^2(e+f x)\right )^{-n} \left (1-\frac {1}{\sin (e+f x)+1}\right )^{-n} \left (4 \sqrt {\frac {\sin (e+f x)-1}{\sin (e+f x)+1}} (-\sin (e+f x))^n F_1\left (-n-\frac {1}{2};-\frac {1}{2},-n;\frac {1}{2}-n;\frac {2}{\sin (e+f x)+1},\frac {1}{\sin (e+f x)+1}\right )-(2 n+1) \sqrt {2-2 \sin (e+f x)} \left (1-\frac {1}{\sin (e+f x)+1}\right )^n F_1\left (1;\frac {1}{2},-n;2;\frac {1}{2} (\sin (e+f x)+1),\sin (e+f x)+1\right )\right )}{4 a f (2 n+1) (\sin (e+f x)-1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sin[e + f*x]^n/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(Cos[e + f*x]*Sin[e + f*x]^(2*n)*Sqrt[a*(1 + Sin[e + f*x])]*(4*AppellF1[-1/2 - n, -1/2, -n, 1/2 - n, 2/(1 + Si
n[e + f*x]), (1 + Sin[e + f*x])^(-1)]*(-Sin[e + f*x])^n*Sqrt[(-1 + Sin[e + f*x])/(1 + Sin[e + f*x])] - (1 + 2*
n)*AppellF1[1, 1/2, -n, 2, (1 + Sin[e + f*x])/2, 1 + Sin[e + f*x]]*Sqrt[2 - 2*Sin[e + f*x]]*(1 - (1 + Sin[e +
f*x])^(-1))^n))/(4*a*f*(1 + 2*n)*(-1 + Sin[e + f*x])*(-Sin[e + f*x]^2)^n*(1 - (1 + Sin[e + f*x])^(-1))^n)

________________________________________________________________________________________

fricas [F]  time = 0.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sin \left (f x + e\right )^{n}}{\sqrt {a \sin \left (f x + e\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^n/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sin(f*x + e)^n/sqrt(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin \left (f x + e\right )^{n}}{\sqrt {a \sin \left (f x + e\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^n/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^n/sqrt(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

maple [F]  time = 0.20, size = 0, normalized size = 0.00 \[ \int \frac {\sin ^{n}\left (f x +e \right )}{\sqrt {a +a \sin \left (f x +e \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^n/(a+a*sin(f*x+e))^(1/2),x)

[Out]

int(sin(f*x+e)^n/(a+a*sin(f*x+e))^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin \left (f x + e\right )^{n}}{\sqrt {a \sin \left (f x + e\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^n/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^n/sqrt(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\sin \left (e+f\,x\right )}^n}{\sqrt {a+a\,\sin \left (e+f\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(e + f*x)^n/(a + a*sin(e + f*x))^(1/2),x)

[Out]

int(sin(e + f*x)^n/(a + a*sin(e + f*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin ^{n}{\left (e + f x \right )}}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**n/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral(sin(e + f*x)**n/sqrt(a*(sin(e + f*x) + 1)), x)

________________________________________________________________________________________